Cohesins Bind to Preferential Sites along Yeast Chromosome III, with Differential Regulation along Arms versus the Centric Region
نویسندگان
چکیده
Sister chromatid cohesion is mediated by evolutionary conserved chromosomal proteins, termed "cohesins." Using an extension of chromatin immunoprecipitation, we have analyzed the distribution of cohesins Mcd1/ Sccl and Smc1 along yeast chromosome III. Both proteins occur preferentially at the same approximately 23 positions. Sites in a approximately 50 kb region around the centromere give especially intense signals. Prominent centric region binding appears to emerge from a more even distribution, probably by differential loss of cohesins along the chromosome arms. Cohesin binding peaks correspond closely to peaks of high local AT composition, a base composition periodicity of approximately 15 kb that is distinct from the approximately 50 kb periodicity of base composition isochores, consistent with axis association of cohesins. The methodology described can be used to analyze the distribution of any DNA-binding protein and, via microchips, along entire genomes.
منابع مشابه
Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis
Sister chromatid cohesion is essential for tension-sensing mechanisms that monitor bipolar attachment of replicated chromatids in metaphase. Cohesion is mediated by the association of cohesins along the length of sister chromatid arms. In contrast, centromeric cohesin generates intrastrand cohesion and sister centromeres, while highly cohesin enriched, are separated by >800 nm at metaphase in y...
متن کاملCohesins Functionally Associate with CTCF on Mammalian Chromosome Arms
Cohesins mediate sister chromatid cohesion, which is essential for chromosome segregation and postreplicative DNA repair. In addition, cohesins appear to regulate gene expression and enhancer-promoter interactions. These noncanonical functions remained unexplained because knowledge of cohesin-binding sites and functional interactors in metazoans was lacking. We show that the distribution of coh...
متن کاملMeiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3
In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premei...
متن کاملThe core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I.
The stepwise loss of cohesins, the complexes that hold sister chromatids together, is required for faithful meiotic chromosome segregation. Cohesins are removed from chromosome arms during meiosis I but are maintained around centromeres until meiosis II. Here we show that Sgo1, a protein required for protecting centromeric cohesins from removal during meiosis I, localizes to cohesin-associated ...
متن کاملMaking chromosomes hot for breakage
Meiosis is a special cell division program that reduces the diploid chromosome set to a haploid set for sexual reproduction. Reductional segregation of homologous chromosomes is helped by physical linkages (crossovers) provided by recombina-tion. A long-standing problem in biology has been to understand how meiotic recom-bination is controlled, since its initiation by DNA double-strand breaks (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 98 شماره
صفحات -
تاریخ انتشار 1999